Statement of Verification

BREG EN EPD No.: 000078 ECO EPD Ref. No. 000239 Issue 07

This is to verify that the

Environmental Product Declaration

provided by:

Colakoglu Metalurji A.S (member of UK CARES)

is in accordance with the requirements of:

EN 15804:2012+A2:2019

and

BRE Global Scheme Document SD207

This declaration is for: Hot rolled flat steel (Secondary Production Route – Scrap)

Company Address

Dilovası Organize Sanayi Bölgesi, 1. Kısım Göksu Caddesi No: 16, 41455 Dilovası, Kocaeli, Turkey

Emma Baker

gned for BRE Global Ltd

Operator

27 February 2017 Date of First Issue 21 April 2023 Date of this Issue

20 April 2026 Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit <u>www.greenbooklive.com/terms</u>. To check the validity of this statement of verification please, visit <u>www.greenbooklive.com/check</u> or contact us. BRE Global Ltd., Garston, Watford WD25 9XX. T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: <u>Enquiries@breglobal.com</u>

BF1805-C-ECOP Rev 0.3

Page 1 of 19

© BRE Global Ltd, 2022

BRE/Global

EPD

Environmental Product Declaration

EPD Number: 000078

General Information

EPD Programme Operator	Applicable Product Category Rules				
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804+A2 PN 514 Rev 3.0				
Commissioner of LCA study	LCA consultant/Tool				
UK CARES Pembroke House 21 Pembroke Road Sevenoaks Kent, TN13 1XR UK	UK CARES EPD Tool thinkstep UK Ltd Euston Tower - Level 33, 286 Euston Road London, NW1 3DP www.thinkstep.com				
Declared/Functional Unit	Applicability/Coverage				
1 tonne of hot rolled flat steel product manufactured by the secondary (scrap-based) production route.	Manufacturer-specific product.				
ЕРД Туре	Background database				
Cradle to Gate with options	GaBi				
Demonstra	tion of Verification				
CEN standard EN 15	5804 serves as the core PCR ^a				
Independent verification of the declara	ation and data according to EN ISO 14025:2010 ⊠ External				
(Where approp F	riate ^b)Third party verifier: Pat Hermon				
a: Product category rules b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)					
Co	mparability				
Environmental product declarations from different EN 15804:2012+A2:2019. Comparability is further dep and allocations, and background data sources. See Cla	programmes may not be comparable if not compliant with endent on the specific product category rules, system boundaries ause 5.3 of EN 15804:2012+A2:2019 for further guidance				

Information modules covered

	Droduct		0		Use stage										Benefits and loads beyond	
Product		Construction		Rel	Related to the bu		he building fabric Re		Relat the bu	Related to End-of-life he building		End-of-life			the system boundary	
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
$\overline{\mathbf{A}}$	$\mathbf{\nabla}$	\checkmark										$\mathbf{\nabla}$	\checkmark	\checkmark	\checkmark	$\mathbf{\nabla}$

Note: Ticks indicate the Information Modules declared.

Manufacturing site

Colakoglu Metalurji A.S (member of UK CARES)

Dilovası Organize Sanayi Bölgesi, 1. Kısım Göksu Caddesi No: 16, 41455 Dilovası, Kocaeli, Turkey

Construction Product:

Product Description

Hot Rolled Flat Steels in coils, sheets, plates and other required forms are non-alloy or low-alloy steel products. Hot Rolled Flat Steel Coil (according to product standards listed in Sources of Additional Information) that is obtained from scrap, melted in an Electric Arc Furnace (EAF) followed by hot rolling.

Hot Rolled Flat Steel Coil is produced as a feedstock for cold rolled flat steel coil and coated steel coil, but also for direct use in a variety of industrial applications including construction, hot and cold forming, gas containers, pressure vessels, steel tubes used in transport and energy pipelines.

The declared unit is 1 tonne of hot rolled flat steel coil as used in a variety of industrial applications.

Technical Information

Property		Value, Unit
Production route		EAF
Density		7850 kg/m ³
Modulus of elasticity		200000 N/mm ²
Weldability, Carbon Equivalent (Ce EN 10025-2:2004 grades S235JR, S S275JR, S275J0, S275J2, S355JR, S S235JRC, S235J0C, S235J2C, S275 S275J2C and S355JRC, S355J0C, S thickness ≥1mm & ≤26mm)	e q) 235J0, S235J2, S355J0, S355J2; 5JRC, S275J0C, 3355J2C (for product	max 0.35% for S235 grade series max 0.40% for S275 grade series max 0.45% for S355 grade series
EN 10025-5-2:2004 grades S355J0W product thickness ≥1mm & ≤12mm)	VP, S355J2WP (for	max 0.52% for all grades and for all thicknesses
Yield Strength EN 10025-2:2004 grades S235JR, S2 S275JR, S275J0, S275J2, S355JR, S S235JRC, S235J0C, S235J2C, S275 S275J2C and S355JRC, S355J0C, S thickness ≥1mm & ≤16mm and for thi ≤26mm)	235J0, S235J2, S355J0, S355J2; SJRC, S275J0C, S355J2C (for product ickness >16mm &	225 to 235 N/mm ² for S235 grade series 265 to 275 N/mm ² for S275 grade series 345 to 355 N/mm ² for S355 grade series min 355 N/mm ² for S355J0WP, S355J2WP
product thickness ≥1mm & ≤12mm) Tensile Strength		
EN 10025-2.2004 grades S235JR, S S275JR, S275J0, S275J2, S355JR, S S235JRC, S235J0C, S235J2C, S275 S275J2C and S355JRC, S355J0C, S thickness ≥1mm & <3mm and for thickness	235J0, S235J2, S355J0, S355J2; SJRC, S275J0C, S355J2C (for product kness ≥3mm & ≤26mm)	360 to 510 N/mm ² for S235 grade series 410 to 580 N/mm ² for S275 grade series 470 to 680 N/mm ² for S355 grade series
EN 10025-5-2:2004 grades S355J0W product thickness ≥1mm & <3mm and ≤26mm)	VP, S355J2WP (for d for thickness ≥3mm &	470-680 N/mm ² for S355J0WP, S355J2WP
%Elongation EN 10025-2:2004 grades S235JR, S2 S275JR, S275J0, S275J2, S355JR, S S235JRC, S235J0C, S235J2C, S275 S275J2C and S355JRC, S355J0C, S test piece L ₀ =80 mm for thickness ≥1 longitudinal test piece L ₀ =5.65 $\sqrt{S_0}$ mr ≤26mm)	235J0, S235J2, S355J0, S355J2; SJRC, S275J0C, S355J2C (longitudinal mm & <3mm and n for thickness ≥3mm &	min 17 to min 26% for S235 grade series min 15 to min 23% for S275 grade series min 14 to min 22% for S355 grade series
EN 10025-5-2:2004 grades S355J0W longitudinal test piece $L_0=80$ mm for t <3mm; longitudinal test piece $L_0=5.65$ ≥3mm & ≤26mm)	VP, S355J2WP (min, thickness >1.5mm & 5√S₀ mm for thickness	min 16 to min 22 for S355J0WP, S355J2WP
Impact Strength KV longitudinal EN 10025-2:2004 grades S235JR, S2 S275JR, S275J0, S275J2, S355JR, S S235JRC, S235J0C, S235J2C, S275 S275J2C and S355JRC, S355J0C, S	235J0, S235J2, S355J0, S355J2; SJRC, S275J0C, S355J2C	min 27J at 20°C for all JR types min 27J at 0°C for all J0 types min 27J at -20°C for all J2 types
EN 10025-5-2:2004 grades S355J0W	VP, S355J2WP	
יD Number: 000078 1805-C-ECOP Rev 0.2	Date of Issue:21 April 2023 Page 4 of 19	Expiry Date 20 April 2026 © BRE Global Ltd, 2022

	min 27J at 0°C for S355J0WP min 27J at -20°C for S355J2WP
Property	Value, Unit
Recycled content (as per ISO 14021:2016)	80.5 %

Main Product Contents

Material/Chemical Input	%
Fe	97
C, Mn, Si, V, Ni, Cu, Cr, Mo and others	3

Manufacturing Process

Scrap metal and/or DRI and/or HBI is melted in an electric arc furnace to obtain liquid steel. This is then refined to remove impurities and alloying additions can be added to give the required properties.

Hot metal (molten steel) from the EAF is then cast into steel slabs before being sent to the rolling mill (strip mill) where they are rolled and shaped to the required dimensions for the finished coils of hot rolled flat steel.

Quality assurance and quality control of hot rolled flat steel are maintained according to ISO 9001 and product standards listed in Sources of Additional Information.

The products are packed with steel straps to bind the products, either of the steel straps and products do not include any biogenic materials.

Process flow diagram

Scrap - Hot Rolled Flat Steel

Construction Installation

Processing and proper use of hot rolled flat steel products depends on the application and should be made in accordance with generally accepted practices, standards and manufacturing recommendations.

During transport and storage of hot rolled flat steel products the usual requirements for securing loads is to be observed.

Use Information

The composition of the hot rolled flat steel products does not change during use.

Hot rolled flat steel products do not cause adverse health effects under normal conditions of use.

No risks to the environment and living organisms are known to result from the mechanical destruction of the hot rolled flat steel product itself.

End of Life

Hot rolled flat steel products can be reused after dismantling, renovating and demolishing and also can be recycled to the same (or higher/lower) quality of steel depending upon the metallurgy and processing of the recycling route.

It is a high value resource, so efforts are made to recycle steel scrap rather than disposing of it at EoL. A recycling rate of 92% is typical for hot rolled flat steel products

Life Cycle Assessment Calculation Rules

Declared unit description

The declared unit is 1 tonne of hot rolled flat steel product manufactured by the secondary (scrap-based) production route

System boundary

The system boundary of the EPD follows the modular design defined by EN 15804+A2. This is a cradle to gate – with options EPD and thus covers modules from A1 to A4, modules from C1 to C4 and module D.

Impacts and aspects related to losses/wastage (i.e. production, transport and waste processing and end-of-life stage of lost waste products and materials) are considered in the modules in which the losses/wastage occur.

Once steel scrap has been collected for recycling it is considered to have reached the end of waste state.

Data sources, quality and allocation

Data Sources: Manufacturing data of the period 01/01/2021-31/12/2021 has been provided by Colakoglu Metalurji A. S. (member of UK CARES).

The selection of the background data for electricity generation is in line with the BRE Global PCR. Country or region specific power grid mixes are selected from GaBi 2021 databases (Sphera 2021) databases; thus, consumption grid mix of Turkey has been selected to suit specific manufacturing location.

Data Quality: Data quality can be described as good. Background data are consistently sourced from the GaBi 2021 databases (Sphera 2021). The primary data collection was thorough, considering all relevant flows and these data have been verified by UK CARES.

Data quality level and criteria of the UN Environment Global Guidance on LCA database development:

Geographical Representativeness	: Good
Technical Representativeness	: Very good
Time Representativeness	: Good

Allocation: EAF slag and mill scale are produced as co-products from the steel manufacturing process. Impacts are allocated between the steel, the slag and the mill scale based on economic value. The revenue generated from both mill scale and EAF slag are 0.02% and 0.24% respectively, and their total is less than 1% in relation to the product based on current market prices, these co-products are of definite value and are freely/readily traded in reality. For this reason, economic allocation has been applied to the processes where these co-products arise.

Production losses of steel during the production process are recycled in a closed loop offsetting the requirement for external scrap. Specific information on allocation within the background data is given in the GaBi datasets documentation (/GaBi 6 2021/)

Cut-off criteria

On the input side all flows entering the system and comprising more than 1% in total mass or contributing more than 1% to primary energy consumption are considered. All inputs used as well as all process-specific waste and process emissions were assessed. For this reason, material streams which were below 1% (by mass) were captured as well. In this manner the cut-off criteria according to the BRE guidelines are fulfilled.

The mass of steel strap used for binding the product is less than 1 % of the total mass of the product.

hre

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated) Parameters describing environmental impacts

			GWP-	GWP-	GWP-	GWP-	ODP	AP	EP-
			total	fossil	biogenic	luluc			freshwater
			kg CO ₂	kg CO ₂	kg CO ₂	kg CO ₂	kg CFC11	mol H⁺	kg (PO ₄) ³⁻
	Raw material supply	A1	807	807	-0 157	0.315	1 33E-07	2 31	6.07E-04
Product stage	Transport	A2	56.3	56.2	0.068	0.017	5.86E-15	2.08	1 78E-05
	Manufacturing	A3	494	493	0 792	0 190	1 26F-12	4 12	2 24F-04
	Total (of product stage)	A1-3	1.36E+03	1.36E+03	0 703	0.522	1.33E-07	8.51	8 49F-04
Construction	Transport	A4	MND	MND	MND	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND	MND	MND	MND
	lise	B1	MND	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND	MND
	Repair	B3	MND	MND	MND	MND	MND	MND	MND
Lise stage	Replacement	B4	MND	MND	MND	MND	MND	MND	MND
obe stage	Refurbishment	B5	MND	MND	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND	MND
		07	WIND		WIND	WIND		NIN D	WIND
%92 Recycling / %8	3 Landfill Scenario								
	Deconstruction, demolition	C1	0	0	0	0	0	0	0
End of life	Transport	C2	40.6	40.3	-0.046	0.312	5.10E-15	0.178	1.14E-04
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	1.18	1.21	-0.035	0.004	4.70E-15	0.009	2.03E-06
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	- 2.25E+02	- 2.25E+02	0.392	-0.005	1.05E-12	-0.622	-3.89E-05
100% Lanfill Scena	rio								
	Deconstruction, demolition	C1	0	0	0	0	0	0	0
End of life	Transport	C2	1.88	1.86	-0.002	0.015	2.38E-16	0.007	5.53E-06
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	14.7	15.1	-0.439	0.044	5.87E-14	0.108	2.54E-05
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	1.57E+03	1.57E+03	-2.74	0.037	-7.35E-12	4.34	2.71E-04
100% Recycling Sc	enario								
	Deconstruction, demolition	C1	0	0	0	0	0	0	0
End of life	Transport	C2	43.9	43.6	-0.049	0.338	5.53E-15	0.192	1.23E-04
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-380	-381	0.665	-0.009	1.78E-12	-1.05	-6.59E-05

GWP-total = Global warming potential, total; GWP-fossil = Global warming potential, fossil; GWP-biogenic = Global warming potential, biogenic; GWP-luluc = Global warming potential, land use and land use change;

ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

Date of Issue:21 April 2023 Page 8 of 19

hre

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated) Parameters describing environmental impacts

			EP- marine	EP- terrestrial	POCP	ADP- mineral &metals	ADP-fossil	WDP	PM
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m ³ world eq	disease incidenc e
	Raw material supply	A1	0.530	5.18	1.57	4.20E-04	7.09E+03	17.8	2.94E-05
Droduct store	Transport	A2	0.530	5.81	1.48	1.77E-06	683	0.105	3.46E-05
T Touter stage	Manufacturing	A3	0.337	3.68	1.11	3.19E-05	6.01E+03	209	3.73E-05
	Total (of product stage)	A1-3	1.40	14.67	4.16	4.54E-04	1.38E+04	227	1.01E-04
Construction	Transport	A4	MND	MND	MND	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND	MND
	Repair	B3	MND	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND	MND
%92 Recycling / %8	8 Landfill Scenario								
	Deconstruction, demolition	C1	0	0	0	0	0	0	0
End of life	Transport	C2	0.085	0.940	0.179	2.97E-06	536	0.334	1.39E-06
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0.002	0.025	0.007	1.14E-07	16.0	0.130	1.07E-07
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-0.129	-1.40	-0.431	4.81E-06	-1.64E+03	4.62	-8.12E-06
100% Lanfill Scena	rio								
	Deconstruction, demolition	C1	0	0	0	0	0	0	0
End of life	Transport	C2	0.003	0.035	0.006	1.42E-07	24.8	0.016	3.43E-08
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0.028	0.307	0.085	1.43E-06	201.0	1.62	1.34E-06
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.901	9.76	3.01	-3.36E- 05	1.15E+04	-32.3	5.67E-05
100% Recycling Sc	enario								
	Deconstruction, demolition	C1	0	0	0	0	0	0	0
End of life	Transport	C2	0.092	1.02	0.194	3.22E-06	581	0.362	1.50E-06
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-0.219	-2.37	-0.731	8.15E-06	-2.78E+03	7.83	-1.38E-05

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment;

P-terrestrial = Eutrophication potential, accumulated exceedance; POCP = Formation potential of tropospheric ozone; ADP-mineral&metals = Abiotic depletion potential for non-fossil resources;

ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts

			IRP	ETP-fw	HTP-c	HTP-nc	SQP
			kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless
	Raw material supply	A1	7.27	0.001	5.32E-07	8.60E-06	4.86E+02
Desident stars	Transport	A2	0.109	1.78E-05	9.23E-09	4.35E-07	10.3
Product stage	Manufacturing	A3	0.833	2.24E-04	7.12E-08	3.60E-06	294
	Total (of product stage)	A1-3	8.2	0.001	6.12E-07	1.26E-05	7.90E+02
Construction	Transport	A4	MND	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND
	Repair	B3	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND
%92 Recycling / %8 Landfill Scenario							
	Deconstruction, demolition	C1	0	0	0	0	0
End of life	Transport	C2	0.092	1.14E-04	7.79E-09	4.56E-07	174
	Waste processing	C3	0	0	0	0	0
	Disposal	C4	0.018	2.03E-06	1.35E-09	1.49E-07	3.24
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	2.57	-3.89E-05	-3.57E-07	-1.22E-06	134
100% Lanfill Scena	rio						
	Deconstruction, demolition	C1	0	0	0	0	0
End of life	Transport	C2	0.004	5.53E-06	3.61E-10	2.14E-08	8.51
	Waste processing	C3	0	0	0	0	0
	Disposal	C4	0.221	2.54E-05	1.69E-08	1.86E-06	40.5
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-18.0	2.71E-04	2.49E-06	8.50E-06	-937
100% Recycling Sc	enario						
	Deconstruction, demolition	C1	0	0	0	0	0
End of life	Transport	C2	0.100	1.23E-04	8.44E-09	4.94E-07	189
	Waste processing	C3	0	0	0	0	0
	Disposal	C4	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	4.36	-6.59E-05	-6.05E-07	-2.06E-06	227

IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans; HTP-nc = Potential comparative toxic unit for humans; and SQP = Potential soil quality index.

LCA Results (continued)

Parameters describing resource use, primary energy									
			PERE	PERM	PERT	PENRE	PENRM	PENRT	
			MJ	MJ	MJ	MJ	MJ	MJ	
	Raw material supply	A1	437	0	437	7.13E+03	0	7.13E+03	
Broduct stops	Transport	A2	3.69	0	3.69	684	0	684	
FIDUUCI Slage	Manufacturing	A3	1.38E+03	0	1.38E+03	6.01E+03	0	6.01E+03	
	Total (of product stage)	A1-3	1.82E+03	0	1.82E+03	1.38E+04	0	1.38E+04	
Construction	Transport	A4	MND	MND	MND	MND	MND	MND	
process stage	Construction	A5	MND	MND	MND	MND	MND	MND	
	Use	B1	MND	MND	MND	MND	MND	MND	
	Maintenance	B2	MND	MND	MND	MND	MND	MND	
	Repair	B3	MND	MND	MND	MND	MND	MND	
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND	
	Refurbishment	B5	MND	MND	MND	MND	MND	MND	
	Operational energy use	B6	MND	MND	MND	MND	MND	MND	
	Operational water use	B7	MND	MND	MND	MND	MND	MND	
%92 Recycling / %8 Landfill Scenario									
	Deconstruction, demolition	C1	0	0	0	0	0	0	
End of life	Transport	C2	28.4	0	28.4	537	0	537	
	Waste processing	C3	0	0	0	0	0	0	
	Disposal	C4	2.16	0	2.16	16.1	0	16.1	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	209	0	209	-1.66E+03	0	-1.66E+03	
100% Landfill Scen	ario								
	Deconstruction, demolition	C1	0	0	0	0	0	0	
End of life	Transport	C2	1.38	0	1.38	24.8	0	24.8	
	Waste processing	C3	0	0	0	0	0	0	
	Disposal	C4	27	0	27	201	0	201	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.46E+03	0	-1.46E+03	1.16E+04	0	1.16E+04	
100% Recycling Sc	enario								
	Deconstruction, demolition	C1	0	0	0	0	0	0	
End of life	Transport	C2	30.7	0	30.7	582	0	582	
	Waste processing	C3	0	0	0	0	0	0	
	Disposal	C4	0	0	0	0	0	0	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	354	0	354	-2.81E+03	0	-2.81E+03	

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials; PERM = Use of renewable primary energy resources used as raw

materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

EPD Number: 000078	
BF1805-C-ECOP Rev 0.2	

LCA Results (continued)

Parameters describing resource use, secondary materials and fuels, use of water									
			SM	RSF	NRSF	FW			
			kg	MJ net calorific value	MJ net calorific value	m³			
	Raw material supply	A1	0	0	0	17.8			
Product stage	Transport	A2	0	0	0	0.105			
Fibuuci stage	Manufacturing	A3	-805	0	0	209			
	Total (of product stage)	A1-3	-805	0	0	2.27E+02			
Construction	Transport	A4	MND	MND	MND	MND			
process stage	Construction	A5	MND	MND	MND	MND			
	Use	B1	MND	MND	MND	MND			
	Maintenance	B2	MND	MND	MND	MND			
	Repair	B3	MND	MND	MND	MND			
Use stage	Replacement	B4	MND	MND	MND	MND			
	Refurbishment	B5	MND	MND	MND	MND			
	Operational energy use	B6	MND	MND	MND	MND			
	Operational water use	B7	MND	MND	MND	MND			
%92 Recycling / %8 L	andfill Scenario								
	Deconstruction, demolition	C1	0	0	0	0			
End of life	Transport	C2	0	0	0	0.334			
	Waste processing	C3	0	0	0	0			
	Disposal	C4	0	0	0	0.130			
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-115	0	0	4.62			
100% Landfill Scenar	io								
	Deconstruction, demolition	C1	0	0	0	0			
End of life	Transport	C2	0	0	0	0.016			
	Waste processing	C3	0	0	0	0			
	Disposal	C4	0	0	0	1.62			
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	805	0	0	-32.3			
100% Recycling Scer	nario								
	Deconstruction, demolition	C1	0	0	0	0			
End of life	Transport	C2	0	0	0	0.362			
	Waste processing	C3	0	0	0	0			
	Disposal	C4	0	0	0	0			
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-195	0	0	7.83			

SM = Use of secondary material; RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

LCA Results (continued)

Other environmental information describing waste categories							
			HWD	NHWD	RWD		
			kg	kg	kg		
Product stage	Raw material supply	A1	1.73E-07	15.8	0.057		
	Transport	A2	6.38E-09	0.070	0.001		
	Manufacturing	A3	9.05E-07	63.4	0.011		
	Total (of product stage)	A1-3	1.08E-06 79.3		0.069		
Construction	Transport	A4	MND	MND	MND		
process stage	Construction	A5	MND	MND	MND		
	Use	B1	MND	MND	MND		
	Maintenance	B2	MND	MND	MND		
	Repair	B3	MND	MND	MND		
Use stage	Replacement	B4	MND	MND	MND		
	Refurbishment	B5	MND	MND	MND		
	Operational energy use	B6	MND	MND	MND		
	Operational water use	B7	MND	MND	MND		
%92 Recycling / %8 Landfill Scenario							
End of life	Deconstruction, demolition	C1	0	0	0		
	Transport	C2	2.58E-08	0.078	6.46E-04		
	Waste processing	C3	0	0 0			
	Disposal	C4	1.70E-09 80.1		1.68E-04		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	2.01E-07	-3.25	0.027		
100% Landfill Scenario							
	Deconstruction, demolition	C1	0	0	0		
End of life	Transport	C2	1.25E-09	0.004	3.00E-05		
	Waste processing	C3	0	0	0		
	Disposal	C4	2.13E-08	1.00E+03	0.002		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.41E-06	22.7 -0.189			
100% Recycling Scenario							
	Deconstruction, demolition	C1	0	0	0		
End of life	Transport	C2	2.79E-08 0.085		6.99E-04		
	Waste processing	C3	0	0	0		
	Disposal	C4	0	0	0		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	3.41E-07	-5.51	0.046		

HWD = Hazardous waste disposed;

NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

LCA Results (continued)

Other environmental information describing output flows – at end of life								
			CRU	MFR	MER	EE	Biogenic carbon (product)	Biogenic carbon (packaging)
			kg	kg	kg	MJ per energy carrier	kg C	kg C
Product stage	Raw material supply	A1	0	0	0	0	0	0
	Transport	A2	0	0	0	0	0	0
	Manufacturing	A3	0	0	0	0	0	0
	Total (of product stage)	A1-3	0	0	0	0	0	0
Construction process stage	Transport	A4	MND	MND	MND	MND	MND	MND
	Construction	A5	MND	MND	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND
	Repair	B3	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND
%92 Recycling / %8 I	Landfill Scenario							
	Deconstruction, demolition	C1	0	-920	0	0	0	0
End of life	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0
100% Landfill Scenar	rio							
	Deconstruction, demolition	C1	0	0	0	0	0	0
End of life	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0
100% Recycling Scenario								
End of life	Deconstruction, demolition	C1	0	-1.00E+03	0	0	0	0
	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0

CRU = Components for reuse;

MFR = Materials for recycling

MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenarios and additional technical information								
Scenario	Parameter	Units	Results					
C1 to C4 End of life,	The end-of-life stage starts when the construction product is replaced, dismantled or deconstructed from the building or construction works and does not provide any further function. The recovered steel is transported for recycling while a small portion is assumed to be unrecoverable and remains in the rubble which is sent to landfill. 92% of the reinforcing steel is assumed to be recycled and 8% is sent to landfill [STEELCONSTRUCTION.INFO 2012]. Once steel scrap is generated through the deconstruction activities on the demolition site it is considered to have reached the "end of waste" state. No further processing is required so there are no impacts associated with this module. Hence no impacts are reported in module C3.							
	Waste for recycling - Recovered steel from crushed concrete	%	92					
	Waste for energy recovery - Energy recovery is not considered for this study as most end of life steel scrap is recycled, while the remainder is landfilled		-					
	Waste for final disposal - Unrecoverable steel lost in crushed concrete and sent to landfill	%	8					
	Portion of energy assigned to rebar from energy required to demolish building, per tonne	MJ	24					
	Transport to waste processing by Truck - Fuel consumption	litre/km	1.56					
	Transport to waste processing by Truck – Distance	km	463					
	Transport to waste processing by Truck – Capacity utilisation		85					
	Transport to waste processing by Truck – Density of Product		7850					
	Transport to waste processing by Container ship - Fuel consumption	litre/km	0.0041					
	Transport to waste processing by Container ship - Distance	km	158					
	Transport to waste processing by Container ship – Capacity utilisation	%	50					
	Transport to waste processing by Container ship – Density of Product	kg/m³	7850					
Module D	It is assumed that 92% of the steel used in the structure is recovered for recycling, while the remainder is landfilled. "Benefits and loads beyond the system boundary" (module D) accounts for the environmental benefits and loads resulting from net steel scrap that is used as raw material in the EAF and that is collected for recycling at end of life. This study is concerned with the secondary production route and more scrap is required as input to the system than is recovered at end of life. The net effect of this is that module D mainly models the burdens associated with the scrap input (secondary material) to the steelmaking process. The resulting scrap credit/burden is calculated based on the global "value of scrap" approach (/worldsteel 2011).							
	Recycled Content	kg	805					
	Re-used Content	kg	0					
	Recovered for recycling	kg	920					
	Recovered for re-use	kg	0					
	Recovered for energy	kg	0					

Summary, comments and additional information

Interpretation

Scrap-based Hot Rolled Flat Steel Coil product of Colakoglu Metalurji A.S. (member of UK CARES) is made via the EAF route. The bulk of the environmental impacts and primary energy demand is attributed to the manufacturing phase, covered by information modules A1-A3 of EN 15804.

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A2:2019. London, BSI, 2019.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO BS EN ISO 14040:2006+A1:2020. London, BSI, 2020.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006+A2:2020. London, BSI, 2020.

Demolition Energy Analysis of Office Building Structural Systems, Athena Sustainable Materials Institute, 1997

Sphera Solutions GmbH; GaBi Software System and Database for Life Cycle Engineering, Sphera Solution GmbH, Leinfelden-Echterdingen, 2021.

GaBi 10, Content Version 2021.2: Documentation of GaBi 10, Content Version 2021.2: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 2021. (http://documentation.gabi-software.com/)

International Energy Agency, Energy Statistics 2013. http://www.iea.org

Kreißig, J. und J. Kümmel (1999): Baustoff-Ökobilanzen. Wirkungsabschätzung und Auswertung in der Steine-Erden-Industrie. Hrsg. Bundesverband Baustoffe Steine + Erden e.V.

U,S, Geological Survey, Mineral Commodity Summaries, Iron and Steel Slag, January 2014

SteelConstruction.info; The recycling and reuse survey, 2012 http://www.steelconstruction.info/The_recycling_and_reuse_survey

Sustainability of construction works - Environmental product declarations - Methodology for selection and use of generic data; German version CEN/TR 15941

REGULATION (EU) No 305/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC

CARES SCS (Sustainable Constructional Steel) Scheme. Appendix 6 – Operational assessment schedule for the sustainable production of hot rolled flat steel products..

CARES CPR (Construction Products Regulation) Scheme - <u>https://www.carescertification.com/certified-</u> <u>companies/search</u> - Certificate number of conformance to EN10025-2 at the time of LCA study – 1244-CPR-1052

KIWA Certificate of conformity of the factory production control - Hot rolled products of structural steels -Certificate number of conformance to Regulation 305/2011/EU of the European Parliament and of the Council of 9 March 2011 (the Construction Products Regulation or CPR) at the time of LCA study - 0620-CPR-58521/05

Material Manufacturer Certificate - Certificate number of conformance to Pressure Equipment Directive 2014/68/EU at the time of LCA study – HPiVS-P1057-043-Q-06-00

EN 10025-1:2004 - Hot Rolled Products of Structural Steels - Part 1: General Technical Delivery Conditions

EN 10025-2:2019 - Hot Rolled Products of Structural Steels - Part 2: Technical Delivery Conditions for Nonalloy Structural Steels

EN 10025-3: 2019 - Hot rolled products of structural steels - Part 3: Technical delivery conditions for normalized/normalized rolled weldable fine grain structural steels

EN 10025-4:2019+A1: 2022 - Hot rolled products of structural steels - Part 4: Technical delivery conditions for thermomechanical rolled weldable fine grain structural steels.

EN 10025-5: 2019 - Hot rolled products of structural steels - Part 5: Technical delivery conditions for structural steels with improved atmospheric corrosion resistance

EN 10025-6: 2019+A1: 2022 - Hot rolled products of structural steels - Part 6: Technical delivery conditions for flat products of high yield strength structural steels in the quenched and tempered condition

EN 10028-1:2017 - Flat products made of steels for pressure purposes - Part 1: General requirements

EN 10028-2:2017 - Flat products made of steels for pressure purposes - Part 2: Non-alloy and alloy steels with specified elevated temperature properties

EN 10028-3: 2017 - Flat products made of steels for pressure purposes - Part 3: Weldable fine grain steels, normalized

EN 10028-4:2017 - Flat products made of steels for pressure purposes - Part 4: Nickel alloy steels with specified low temperature properties

EN 10028-5:2017 - Flat products made of steels for pressure purposes - Part 5: Weldable fine grain steels, thermomechanically rolled

EN 10028-6:2017 - Flat products made of steels for pressure purposes - Part 6: Weldable fine grain steels, quenched and tempered

EN 10111:2008 - Continuously hot rolled low carbon steel sheet and strip for cold forming - Technical delivery conditions

EN 10120: 2017 - Steel sheet and strip for welded gas cylinders

EN 10149-1:2013 - Hot rolled flat products made of high yield strength steels for cold forming - Part 1: General technical delivery conditions

EN 10149-2: 2013 - Hot rolled flat products made of high yield strength steels for cold forming - Part 2: Technical delivery conditions for thermomechanically rolled steels.

EN 10149-3:2013 - Hot rolled flat products made of high yield strength steels for cold forming - Part 3: Technical delivery conditions for normalized or normalized rolled steels

EN 10207: 2017 - Steels for simple pressure vessels - Technical delivery requirements for plates, strips and bars

EN 10217-1: 2019 - Welded steel tubes for pressure purposes - Technical delivery conditions - Part 1: Electric welded and submerged arc welded non-alloy steel tubes with specified room temperature properties

EN 10217-2: 2019 - Welded steel tubes for pressure purposes - Technical delivery conditions - Part 2: Electric welded non-alloy and alloy steel tubes with specified elevated temperature properties

EN 10217-3: 2019 - Welded steel tubes for pressure purposes - Technical delivery conditions - Part 3: Electric welded and submerged arc welded alloy fine grain steel tubes with specified room, elevated and low temperature properties

EN 10217-4:2019 - Welded steel tubes for pressure purposes - Technical delivery conditions - Part 4: Electric welded non-alloy steel tubes with specified low temperature properties

EN 10217-5:2019 - Welded steel tubes for pressure purposes - Technical delivery conditions - Part 5: Submerged arc welded non-alloy and alloy steel tubes with specified elevated temperature properties

EN 10217-6:2019 - Welded steel tubes for pressure purposes - Technical delivery conditions - Part 6: Submerged arc welded non-alloy steel tubes with specified low temperature properties

EN 10338 - 2015 - Hot rolled and cold rolled non-coated products of multiphase steels for cold forming — Technical delivery conditions

SAE J 403 - 2014 - Chemical Compositions of SAE Carbon Steels

ASTM A36 / A36M - 19 Standard Specification for Carbon Structural Steel.

ASTM A53 /A53M - 22 Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

ASTM A283 / A283M - 18 Standard Specification for Low and Intermediate Tensile Strength Carbon Steel Plates

ASTM A500 / A500M – 21a Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes

ASTM A516 / A516M - 17 Standard Specification for Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service

ASTM A572 / A572M - 21 Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel

ASTM A606 / A606M - 18 Standard Specification for Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistance

ASTM A653/A653M-22 - Standard Specification For Steel Sheet, Zinc-Coated (Galvanized) Or Zinc-Iron Alloy-Coated (Galvannealed) By The Hot-Dip Process

ASTM A709 / A709M - 18 Standard Specification for Structural Steel for Bridges

ASTM A786 / 786M - 15 Standard Specification for Hot-Rolled Carbon, Low-Alloy, High-Strength Low-Alloy, and Alloy Steel Floor Plates

ASTM A1011 / A1011M – 18a Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength

ASTM A1018 / A1018M – 18 Standard Specification for Steel, Sheet and Strip, Heavy-Thickness Coils, Hot-Rolled, Carbon, Commercial, Drawing, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength

ABS-2: 2023 - American Bureau of Shipping - Rules for Materials and Welding January 2023 Part 2

AS NZS 1594: 2002 (2016) Structural steel - Hot-rolled plates, floorplates and slabs

CSA G40.20 - G40.21: 2013 (R2018) General requirements for rolled or welded structural quality steel / Structural quality steel

JIS G 3101: 2020 Rolled Steels for general structure

JIS G 3106: 2020 Rolled Steels for welded structure

JIS G 3125: 2021 Superior atmospheric corrosion resisting rolled steels

JIS G 3131: 2018 Hot-rolled mild steel plates, sheets and strips

JIS G 3132: 2018 Hot-rolled carbon steel strip for pipes and tubes

DIN 1614-1: 1986 Steel flat products - hot rolled sheet and strip – Technical delivery conditions – Mild unalloyed steels for cold reducing

DIN EN 10111:2008 Continuously hot rolled low carbon steel sheet and strip for cold forming

API 5L: 46th Edition 2018 - Specification for Line Pipe

API 5CT: 10th Edition 2018 Addendum 1: 2021 - Specification for Casing and Tubing

ISO 3183:2019 - Petroleum And Natural Gas Industries - Steel Pipe For Pipeline Transportation Systems